Classification capacity of spiking neural networks

نویسندگان

  • Zhinus Marzi
  • João Hespanha
  • Upamanyu Madhow
چکیده

We investigate a minimalistic abstraction for a multi-layer spiking neural network (SNN), in order to gain fundamental insight into classifying spatiotemporal patterns using temporal coding. The firing model is based on coincidence detection with temporal binning: a neuron X fires at time t if at least η > 1 upstream neurons fire prior to t such that the spikes arrive at X in an interval [t−δ/2, t+δ/2] (we set η = 2 for our results here). The input layer contains K neurons, each of which emits a single spike in one of T time bins, so that there are T possible spatiotemporal patterns. There are M output neurons, connected to the input layer through a layered reservoir of N neurons. Different input patterns lead to different firing patterns because the synapses connecting neurons are of different, random, lengths. The parameters K and T are measures of the spatial and temporal resolution, respectively, of the patterns to be classified.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Memory Trace in Spiking Neural Networks

Spiking neural networks have a limited memory capacity, such that a stimulus arriving at time t would vanish over a timescale of 200-300 milliseconds [1]. Therefore, only neural computations that require history dependencies within this short range can be accomplished. In this paper, the limited memory capacity of a spiking neural network is extended by coupling it to an delayed-dynamical syste...

متن کامل

Evolutionary Multi-objective Optimization of Spiking Neural Networks

Evolutionary multi-objective optimization of spiking neural networks for solving classification problems is studied in this paper. By means of a Paretobased multi-objective genetic algorithm, we are able to optimize both classification performance and connectivity of spiking neural networks with the latency coding. During optimization, the connectivity between two neurons, i.e., whether two neu...

متن کامل

Unsupervised Classification of Complex Clusters in Networks of Spiking Neurons

For unsupervised clustering in a network of spiking neurons we develop a temporal encoding of continuously valued data to obtain arbitrary clustering capacity and precision with an efficient use of neurons. Input variables are encoded independently in a population code by neurons with 1-dimensional graded and overlapping sensitivity profiles. Using a temporal Hebbian learning rule, the network ...

متن کامل

Effect of sound classification by neural networks in the recognition of human hearing

In this paper, we focus on two basic issues: (a) the classification of sound by neural networks based on frequency and sound intensity parameters (b) evaluating the health of different human ears as compared to of those a healthy person. Sound classification by a specific feed forward neural network with two inputs as frequency and sound intensity and two hidden layers is proposed. This process...

متن کامل

Implementing Signature Neural Networks with Spiking Neurons

Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditio...

متن کامل

Predicting the buckling Capacity of Steel Cylindrical Shells with Rectangular Stringers under Axial Loading by using Artificial Neural Networks

A parametric study was carried out in order to investigate the buckling capacity of the vertically stiffened cylindrical shells. To this end ANSYS software was used. Cylindrical steel shells with different yield stresses, diameter-to-thickness ratios (D/t) and number of stiffeners were modeled and their buckling capacities were calculated by displacement control nonlinear static analysis.  Radi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016